Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells
نویسندگان
چکیده
BACKGROUND Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. RESULTS This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. CONCLUSION Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.
منابع مشابه
Biotransformation of Progesterone by Whole Cells of Filamentous Fungi Aspergillus brasiliensis
Microbial steroid biotransformation have found wide-reaching application for the production of more precious and functionalized compounds due to their high regio-and stereoselectivity. In this study, the possibility of using filamentous fungi Aspergillus brasiliensis cells in the biotransformation of progesterone (I), a C-21 steroid hormone was studied for the first time.The fungal strain was i...
متن کاملBiotransformation of Progesterone by Whole Cells of Filamentous Fungi Aspergillus brasiliensis
Microbial steroid biotransformation have found wide-reaching application for the production of more precious and functionalized compounds due to their high regio-and stereoselectivity. In this study, the possibility of using filamentous fungi Aspergillus brasiliensis cells in the biotransformation of progesterone (I), a C-21 steroid hormone was studied for the first time.The fungal strain was i...
متن کاملScreening of Lovastatin Production by Filamentous Fungi
In the present study, 110 fungal strains of Persian Type Culture Collection (PTCC) including some selected strains isolated in various screening projects were tested for their potentiality to produce lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reduc-tase), the rate-limiting enzyme of cholesterol biosynthesis. The fungal strains were cultivated in a t...
متن کاملFeasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw
BACKGROUND Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosi...
متن کاملA CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi
The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015